Part Number Hot Search : 
ICS331 BSS131 25600 JM38510 NEMO10 100K1 300B1 X9455
Product Description
Full Text Search
 

To Download IRLML5203GPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units v ds drain- source voltage -30 v i d @ t a = 25c continuous drain current, v gs @ -10v -3.0 i d @ t a = 70c continuous drain current, v gs @ -10v -2.4 a i dm pulsed drain current  -24 p d @t a = 25c power dissipation 1.25 p d @t a = 70c power dissipation 0.80 linear derating factor 10 mw/c v gs gate-to-source voltage 20 v t j, t stg junction and storage temperature range -55 to + 150 c 07/22/08 parameter max. units r ja maximum junction-to-ambient  100 c/w thermal resistance 
     www.irf.com 1 IRLML5203GPBF hexfet   power mosfet these p-channel mosfets from international rectifierutilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. this benefit provides the designer with an extremely efficient device for use in battery and load management applications. a thermally enhanced large pad leadframe has been incorporated into the standard sot-23 package to produce a hexfet power mosfet with the industry's smallest footprint. this package, dubbed the micro3 tm , is ideal for applications where printed circuit boardspace is at a premium. the low profile (<1.1mm) of the micro3 allows it to fit easily into extremely thin application environments such as portable electronics and pcmcia cards. the thermal resistance and power dissipation are the best available. description  ultra low on-resistance  p-channel mosfet  surface mount  available in tape & reel  low gate charge  lead-free  halogen-free v dss r ds(on) max (m  i d -30v 98@v gs = -10v -3.0a 165@v gs = -4.5v -2.6a     micro3 tm pd - 96166 downloaded from: http:///

2 www.irf.com parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) showing the i sm pulsed source current integral reverse (body diode)  p-n junction diode. v sd diode forward voltage CCC CCC -1.2 v t j = 25c, i s = -1.3a, v gs = 0v  t rr reverse recovery time CCC 17 26 ns t j = 25c, i f = -1.3a q rr reverse recovery charge CCC 12 18 nc di/dt = -100a/s  source-drain ratings and characteristics   24     1.3  s d g   repetitive rating; pulse width limited by max. junction temperature.   pulse width  400s; duty cycle    surface mounted on fr-4 board, t 
 parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage -30 CCC CCC v v gs = 0v, i d = -250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.019 CCC v/c reference to 25c, i d = -1ma CCC CCC 98 v gs = -10v, i d = -3.0a  CCC CCC 165 v gs = -4.5v, i d = -2.6a  v gs(th) gate threshold voltage -1.0 CCC -2.5 v v ds = v gs , i d = -250a g fs forward transconductance 3.1 CCC CCC s v ds = -10v, i d = -3.0a CCC CCC -1.0 v ds = -24v, v gs = 0v CCC CCC -5.0 v ds = -24v, v gs = 0v, t j = 70c gate-to-source forward leakage CCC CCC -100 v gs = -20v gate-to-source reverse leakage CCC CCC 100 v gs = 20v q g total gate charge CCC 9.5 14 i d = -3.0a q gs gate-to-source charge CCC 2.3 3.5 nc v ds = -24v q gd gate-to-drain ("miller") charge CCC 1.6 2.4 v gs = -10v  t d(on) turn-on delay time CCC 12 CCC v dd = -15v  t r rise time CCC 18 CCC i d = -1.0a t d(off) turn-off delay time CCC 88 CCC r g = 6.0 ? t f fall time CCC 52 CCC v gs = -10v c iss input capacitance CCC 510 CCC v gs = 0v c oss output capacitance CCC 71 CCC pf v ds = -25v c rss reverse transfer capacitance CCC 43 CCC ? = 1.0mhz electrical characteristics @ t j = 25c (unless otherwise specified)   m ? r ds(on) static drain-to-source on-resistance i dss drain-to-source leakage current  
downloaded from: http:///

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d -10v 3.0a 0.01 0.1 1 10 100 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs -15v -10v -7.0v -5.5v -4.5v -4.0v -3.5v -2.7v -v , drain-to-source voltage (v) -i , drain-to-source current (a) ds d -2.70v 0.1 1 10 100 0.1 1 10 100 20s pulse width t = 150 c j top bottom vgs -15v -10v -7.0v -5.5v -4.5v -4.0v -3.5v -2.7v -v , drain-to-source voltage (v) -i , drain-to-source current (a) ds d -2.70v 0.1 1 10 100 2.0 3.0 4.0 5.0 6.0 7.0 v = -15v 20s pulse width ds -v , gate-to-source voltage (v) -i , drain-to-source current (a) gs d t = 25 c j t = 150 c j downloaded from: http:///

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 4 8 12 16 0 4 8 12 16 20 q , total gate charge (nc) -v , gate-to-source voltage (v) g gs i = d -3.0a v = -15v ds v = -24v ds 0.1 1 10 100 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -v ,source-to-drain voltage (v) -i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 0.1 1 10 100 0.1 1 10 100 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j a -v , drain-to-source voltage (v) -i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms 1 10 100 0 200 400 600 800 -v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss downloaded from: http:///

www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 0.0 1.0 2.0 3.0 t , case temperature ( c) -i , drain current (a) c d 0.1 1 10 100 1000 0.00001 0.0001 0.001 0.01 0.1 1 10 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)     
 1      0.1 %          + - v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10a. switching time test circuit fig 10b. switching time waveforms downloaded from: http:///

6 www.irf.com fig 12. typical on-resistance vs. drain current fig 11. typical on-resistance vs. gate voltage fig 13b. gate charge test circuit fig 13a. basic gate charge waveform q g q gs q gd v g charge d.u.t. v ds i d i g -3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 0 4 8 12 16 -i d , drain current (a) 0.00 0.10 0.20 0.30 0.40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) v gs = -10v v gs = -4.5v 4.0 6.0 8.0 10.0 12.0 14.0 16.0 -v gs, gate -to -source voltage (v) 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) i d = -3.0a downloaded from: http:///

www.irf.com 7 fig 14. threshold voltage vs. temperature   typical power vs. time 0.001 0.010 0.100 1.000 10.000 100.000 time (sec) 0 10 20 30 p o w e r ( w ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.5 2.0 2.5 - v g s ( t h ) , v a r i a c e ( v ) i d = -250a downloaded from: http:///

8 www.irf.com micro3 / sot-23 package marking a yw lc part number y = year w = week lot code halogen free indicator part number code reference: a = irlml2402 b =irlml2803 c = irlml2402 d = irlml5103 e = irlml6402 f = irlml6401 g = irlml2502 h = irlml5203 note: a line above the work week (as shown here) indicates lead-free micro3 (sot-23 / to-236ab) part marking informationnote: for the most current drawing please refer to ir website at http://www.irf.com/package    
                       

               
 !"     #      
        $        !  " 0.972 1.900 recommended footprint 0.802 0.950 2.742 
 
 
         e e1 e d a b 0.15 [0.006] e1 1 2 3 m cba 5 6 6 5 3x l c b a1 3x a a2 abc m 0.20 [0.008] 0.10 [0.004] c c l2 h 4 l1 7 0.89 1.12 symbol max min a1 b 0.01 0.10 c 0.30 0.50 d 0.08 0.20 e 2.80 3.04 e1 2.10 2.64 e 1.20 1.40 a 0.95 bsc l 0.40 0.60 08 millimeters a2 0.88 1.02 e1 1.90 bsc ref 0.54 l1 bsc 0.25 l2  bsc  ref   
 inches 8 0 
     
 
       
0.0004 min max 
 dimensions notes: 1. dimensioning & tolerancing per ansi y14.5m-1994 2. dimensions are shown in millimeters [inches]. 3. controlling dimension: millimeter. 4. datum plane h is located at the mold parting line. 5. datum a and b to be determined at datum plane h. 6. dimensions d and e1 are measured at datum plane h. dimensions does not include mold protrusions or interlead flash. mold protrusions or interlead flash shall not exceed 0.25 mm [0.010 inch] per side. 7. dimension l is the lead length for soldering to a substrate. 8. outline conforms to jedec outline to-236 ab. downloaded from: http:///

www.irf.com 9 data and specifications subject to change without notice.  ? 

  
         2.05 ( .080 ) 1.95 ( .077 ) tr feed direction 4.1 ( .161 ) 3.9 ( .154 ) 1.6 ( .062 ) 1.5 ( .060 ) 1.85 ( .072 ) 1.65 ( .065 ) 3.55 ( .139 ) 3.45 ( .136 ) 1.1 ( .043 ) 0.9 ( .036 ) 4.1 ( .161 ) 3.9 ( .154 ) 0.35 ( .013 ) 0.25 ( .010 ) 8.3 ( .326 ) 7.9 ( .312 ) 1.32 ( .051 ) 1.12 ( .045 ) 9.90 ( .390 ) 8.40 ( .331 ) 178.00 ( 7.008 ) max. notes: 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. note: for the most current drawing please refer to ir website at http://www.irf.com/package ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2008 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLML5203GPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X